Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Environ Res ; 252(Pt 1): 118743, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38548253

RESUMO

The use of pesticides is increasing steadily, and even though pesticides are essential for food security, they are known for having adverse effects on human health, and the environment. Further, as pesticides are often a reaction to pests, which are influenced by environmental conditions, the environment might influence the use of pesticides-when assuming, that the use is optimized, and adjusted to those conditions. Therefore, it would be helpful to know how environmental conditions influence the pesticide residue levels of fruits and vegetables. In this work, we investigated the correlation between residue levels of ten different pesticides and the weather parameters air temperature, maximum and minimum temperature, wind speed, precipitation, and sun hours using the Pearson correlation coefficient, linear, and polynomial regression. Also, the pesticide residue levels were analyzed regarding outliers. No correlation between the measured residue levels and the weather parameters could be found for most pesticides. However, for Acetamiprid and Fluopyram, a slight correlation between the pesticide residue levels, the air, minimum-, and maximum temperature could be found. The polynomial regression model was better suited to describe the relationship between pesticide residue levels and weather parameters than the linear regression model, but R2 was not higher than 0.069 for any model.

2.
Int J Med Microbiol ; 314: 151601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359735

RESUMO

BACKGROUND: Klebsiella (K.) pneumoniae is a ubiquitous Gram-negative bacterium and a common coloniser of animals and humans. Today, K. pneumoniae is one of the most persistent nosocomial pathogens worldwide and poses a severe threat/burden to public health by causing urinary tract infections, pneumonia and bloodstream infections. Infections mainly affect immunocompromised individuals and hospitalised patients. In recent years, a new type of K. pneumoniae has emerged associated with community-acquired infections such as pyogenic liver abscess in otherwise healthy individuals and is therefore termed hypervirulent K. pneumoniae (hvKp). The aim of this study was the characterisation of K. pneumoniae isolates with properties of hypervirulence from Germany. METHODS: A set of 62 potentially hypervirulent K. pneumoniae isolates from human patients was compiled. Inclusion criteria were the presence of at least one determinant that has been previously associated with hypervirulence: (I) clinical manifestation, (II) a positive string test as a marker for hypermucoviscosity, and (III) presence of virulence associated genes rmpA and/or rmpA2 and/or magA. Phenotypic characterisation of the isolates included antimicrobial resistance testing by broth microdilution. Whole genome sequencing (WGS) was performed using Illumina® MiSeq/NextSeq to investigate the genetic repertoire such as multi-locus sequence types (ST), capsule types (K), further virulence associated genes and resistance genes of the collected isolates. For selected isolates long-read sequencing was applied and plasmid sequences with resistance and virulence determinants were compared. RESULTS: WGS analyses confirmed presence of several signature genes for hvKp. Among them, the most prevalent were the siderophore loci iuc and ybt and the capsule regulator genes rmpA and rmpA2. The most dominant ST among the hvKp isolates were ST395 capsule type K2 and ST395 capsule type K5; both have been described previously and were confirmed by our data as multidrug-resistant (MDR) isolates. ST23 capsule type K1 was the second most abundant ST in this study; this ST has been described as commonly associated with hypervirulence. In general, resistance to beta-lactams caused by the production of extended-spectrum beta-lactamases (ESBL) and carbapenemases was observed frequently in our isolates, confirming the threatening rise of MDR-hvKp strains. CONCLUSIONS: Our study results show that K. pneumoniae strains that carry several determinants of hypervirulence are present for many years in Germany. The detection of carbapenemase genes and hypervirulence associated genes on the same plasmid is highly problematic and requires intensified screening and molecular surveillance. However, the non-uniform definition of hvKp complicates their detection. Testing for hypermucoviscosity alone is not specific enough to identify hvKp. Thus, we suggest that the classification of hvKp should be applied to isolates that not only fulfil phenotypical criteria (severe clinical manifestations, hypermucoviscosity) but also (I) the presence of at least two virulence loci e.g. iuc and ybt, and (II) the presence of rmpA and/or rmpA2.


Assuntos
Infecções Comunitárias Adquiridas , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Virulência/genética , Fatores de Virulência/genética , Plasmídeos , Infecções Comunitárias Adquiridas/microbiologia , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia
3.
J Med Chem ; 66(17): 11761-11791, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37585683

RESUMO

Carbapenem resistance mediated by metallo-ß-lactamases (MBL) such as New Delhi metallo-ß-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential ß-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry. Modification of the NDM-1 structure with remarkable entropic gain was shown by isothermal titration calorimetry and NMR spectroscopy of isotopically labeled protein. The best compounds were potent inhibitors of NDM-1 and other representative MBL with no or little inhibition of human zinc-binding enzymes. These inhibitors significantly reduced the minimum inhibitory concentrations (MIC) of meropenem for multidrug-resistant bacteria recombinantly expressing blaNDM-1 as well as for several multidrug-resistant clinical strains at concentrations non-toxic to human cells.


Assuntos
Carbapenêmicos , Quinolinas , Humanos , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cinética , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Bactérias/metabolismo , Termodinâmica , Zinco/química , Ácidos Carboxílicos , Inibidores de beta-Lactamases/química
4.
Antibiotics (Basel) ; 12(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37370278

RESUMO

The acquisition of hypervirulence-associated genes by carbapenemase-producing Klebsiella pneumoniae is being increasingly observed, and easy-to-use diagnostic tests are needed for the surveillance of the hypervirulent K. pneumoniae (hvKp). In this pilot study, 87 K. pneumoniae isolates from invasive infections collected in 2022 and 2023 were analysed using the LAMP-based eazyplex® Superbug CRE and hvKp assays for the simultaneous identification of carbapenemases and virulence genes (rmpA/A2, iuC, iroC, ybt, clb). Nine isolates showed a Kleborate virulence score of 4 or 5 (10.3%). The time for the results of the eazyplex® assays ranged from 6.5 to 13 min, and the total turnaround time, including sample preparation, was less than 30 min. Five isolates, three of which produced New Delhi metallo-beta lactamase (NDM), were subjected to whole-genome sequencing (WGS) analysis for further characterisation. The eazyplex® test results for beta-lactamase and virulence genes were confirmed. The eazyplex® hvKp, currently only available as a Research Use Only assay, may be a useful tool for the rapid identification of hvKp without significant additional workload when combined with the eazyplex® Superbug CRE assay for the detection of carbapenemases.

5.
Sci Total Environ ; 890: 164179, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37201847

RESUMO

Carbapenemase-producing bacteria (CPB) such as Klebsiella pneumoniae and Escherichia coli are causing hospital outbreaks worldwide. An important transfer route into the aquatic environment is the urban water cycle. We aimed to determine the presence of CPB in hospital wastewater, wastewater treatment plants (WWTPs) and surface waters in a German metropolitan area and to characterise these bacteria by whole-genome comparisons. During two periods in 2020, 366 samples were collected and cultivated on chromogenic screening media. Bacterial colonies were selected for species identification and PCR-based carbapenemase gene screening. Genomes of all detected CPB were sequenced and analysed for resistance gene content, followed by multilocus sequence typing (MLST) and core genome MLST (cgMLST) for K. pneumoniae and E. coli isolates. Carbapenemase genes were detected in 243 isolates, most of which belonged to genera/species Citrobacter spp. (n = 70), Klebsiella spp. (n = 57), Enterobacter spp. (n = 52) and E. coli (n = 42). Genes encoding KPC-2 carbapenemase were detected in 124 of 243 isolates. K. pneumoniae produced mainly KPC-2 and OXA-232 whereas E. coli harboured various enzymes (KPC-2, VIM-1, OXA-48, NDM-5, KPC-2 + OXA-232, GES-5, GES-5 + VIM-1, IMP-8 + OXA-48). Eight and twelve sequence types (STs) were identified for K. pneumoniae and E. coli, respectively, forming different clusters. The detection of numerous CPB species in hospital wastewater, WWTPs and river water is of concern. Genome data highlight a hospital-specific presence of distinct carbapenemase-producing K. pneumoniae and E. coli strains belonging to "global epidemic clones" in wastewater samples representing local epidemiology. The various detected CPB species including E. coli ST635, which is not known to cause human infections, could serve as reservoirs/vectors for the spread of carbapenemase genes in the environment. Therefore, effective pretreatment of hospital wastewater prior to discharge into the municipal wastewater system may be required, although swimming lakes do not appear to be a relevant risk factor for CPB ingestion and infection.


Assuntos
Escherichia coli , Águas Residuárias , Humanos , Tipagem de Sequências Multilocus , beta-Lactamases/análise , Proteínas de Bactérias/análise , Klebsiella pneumoniae , Hospitais , Alemanha/epidemiologia , Citrobacter , Antibacterianos , Testes de Sensibilidade Microbiana
6.
Antibiotics (Basel) ; 12(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237767

RESUMO

Antimicrobial resistance poses a global threat to public health. Of great concern are Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacterales with resistance to carbapenems or third-generation cephalosporins. The aim of the present study was to investigate the in vitro activity of the novel siderophore cephaloporin cefiderocol (CID) and four comparator ß-lactam-ß-lactamase-inhibitor combinations and to give insights into the genetic background of CID-resistant isolates. In total, 301 clinical Enterobacterales and non-fermenting bacterial isolates were selected for this study, including randomly chosen isolates (set I, n = 195) and challenge isolates (set II, n = 106; enriched with ESBL and carbapenemase producers, as well as colistin-resistant isolates). Isolates displayed CID MIC50/90 values of 0.12/0.5 mg/L (set I) and 0.5/1 mg/L (set II). Overall, the CID activity was superior to the comparators against A. baumannii, Stenotrophomonas maltophilia and set II isolates of P. aeruginosa. There were eight CID-resistant isolates detected (MIC > 2 mg/L): A. baumannii (n = 1), E. cloacae complex (n = 5) and P. aeruginosa (n = 2). Sequencing analyses of these isolates detected the acquired ß-lactamase (bla) genes blaNDM-1,blaSHV-12 and naturally occurring blaOXA-396, blaACT-type and blaCMH-3. In conclusion, CID revealed potent activity against clinically relevant organisms of multidrug-resistant Enterobacterales and non-fermenters.

7.
Euro Surveill ; 28(10)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36892470

RESUMO

BackgroundCarbapenemase-producing Enterobacterales (CPE) are rapidly increasing worldwide, also in Europe. Although prevalence of CPE in Germany is comparatively low, the National Reference Centre for Multidrug-resistant Gram-negative Bacteria noted annually increasing numbers of NDM-5-producing Escherichia coli isolates.AimAs part of our ongoing surveillance programme, we characterised NDM-5-producing E. coli isolates received between 2013 and 2019 using whole genome sequencing (WGS).MethodsFrom 329 identified NDM-5-producing E. coli, 224 isolates from known geographical locations were subjected to Illumina WGS. Analyses of 222 sequenced isolates included multilocus sequence typing (MLST), core genome (cg)MLST and single-nucleotide polymorphism (SNP)-based analyses.ResultsResults of cgMLST revealed genetically distinct clusters for many of the 43 detected sequence types (ST), of which ST167, ST410, ST405 and ST361 predominated. The SNP-based phylogenetic analyses combined with geographical information identified sporadic cases of nosocomial transmission on a small spatial scale. However, we identified large clusters corresponding to clonal dissemination of ST167, ST410, ST405 and ST361 strains in consecutive years in different regions in Germany.ConclusionOccurrence of NDM-5-producing E. coli rose in Germany, which was to a large extent due to the increased prevalence of isolates belonging to the international high-risk clones ST167, ST410, ST405 and ST361. Of particular concern is the supra-regional dissemination of these epidemic clones. Available information suggest community spread of NDM-5-producing E. coli in Germany, highlighting the importance of epidemiological investigation and an integrated surveillance system in the One Health framework.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Tipagem de Sequências Multilocus , Filogenia , beta-Lactamases/genética , Alemanha/epidemiologia , Testes de Sensibilidade Microbiana , Células Clonais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
8.
Front Microbiol ; 13: 977330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483203

RESUMO

Ceftazidime-avibactam is one of the last resort antimicrobial agents for the treatment of carbapenem-resistant, Gram-negative bacteria. Metallo-ß-lactamase-producing bacteria are considered to be ceftazidime-avibactam resistant. Here, we evaluated a semi-automated antimicrobial susceptibility testing system regarding its capability to detect phenotypic ceftazidime-avibactam resistance in 176 carbapenem-resistant, metallo-ß-lactamase-producing Enterobacterales and Pseudomonas aeruginosa isolates. Nine clinical isolates displayed ceftazidime-avibactam susceptibility in the semi-automated system and six of these isolates were susceptible by broth microdilution, too. In all nine isolates, metallo-ß-lactamase-mediated hydrolytic activity was demonstrated with the EDTA-modified carbapenemase inactivation method. As zinc is known to be an important co-factor for metallo-ß-lactamase activity, test media of the semi-automated antimicrobial susceptibility testing system and broth microdilution were supplemented with zinc. Thereby, the detection of phenotypic resistance was improved in the semi-automated system and in broth microdilution. Currently, ceftazidime-avibactam is not approved as treatment option for infections by metallo-ß-lactamase-producing, Gram-negative bacteria. In infections caused by carbapenem-resistant Gram-negatives, we therefore recommend to rule out the presence of metallo-ß-lactamases with additional methods before initiating ceftazidime-avibactam treatment.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36474310

RESUMO

BACKGROUND: Escherichia coli is the leading pathogen of community-acquired urinary tract infections. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene oral antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action that confers activity against most strains of target pathogens, such as E. coli, Staphylococcus saprophyticus and Neisseria gonorrhoeae, including those resistant to other antibiotics. OBJECTIVES: This study assessed the in vitro activity of gepotidacin in comparison with ciprofloxacin and other oral standard-of-care antibiotics using a large collection of urine isolates of E. coli obtained from outpatients in Germany. METHODS: Four hundred and sixty E. coli collected from 23 laboratories during a surveillance study in 2019/2020 were tested. Forty-six isolates (10.0%) produced an ESBL of the CTX-M family, half of which belonged to MDR clonal subgroups of E. coli ST131. Antibiotic susceptibilities were tested at a reference laboratory by broth microdilution according to the standard ISO 20776-1. RESULTS: Fifty-three (11.5%) isolates were ciprofloxacin resistant, 25 (47.2%) of which also produced an ESBL. Overall, MIC50/90 values for gepotidacin were 2/4 mg/L (MIC range 0.125-16 mg/L), with no differences in activity between ciprofloxacin-susceptible and ciprofloxacin-resistant isolates, ESBL-producing and non-ESBL isolates, O25b-ST131 isolates, and isolates susceptible or resistant to fosfomycin, mecillinam or nitrofurantoin. CONCLUSIONS: Gepotidacin showed promising in vitro activity against urine isolates of E. coli, including ciprofloxacin-resistant isolates, ESBL-producing isolates and isolates resistant to oral standard-of-care antibiotics.

10.
PLoS One ; 17(7): e0271317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35839265

RESUMO

Extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli have been widely described as the cause of treatment failures in humans around the world. The origin of human infections with these microorganisms is discussed controversially and in most cases hard to identify. Since they pose a relevant risk to human health, it becomes crucial to understand their sources and the transmission pathways. In this study, we analyzed data from different studies in Germany and grouped ESBL-producing E. coli from different sources and human cases into subtypes based on their phenotypic and genotypic characteristics (ESBL-genotype, E. coli phylogenetic group and phenotypic antimicrobial resistance pattern). Then, a source attribution model was developed in order to attribute the human cases to the considered sources. The sources were from different animal species (cattle, pig, chicken, dog and horse) and also from patients with nosocomial infections. The human isolates were gathered from community cases which showed to be colonized with ESBL-producing E. coli. We used the attribution model first with only the animal sources (Approach A) and then additionally with the nosocomial infections (Approach B). We observed that all sources contributed to the human cases, nevertheless, isolates from nosocomial infections were more related to those from human cases than any of the other sources. We identified subtypes that were only detected in the considered animal species and others that were observed only in the human population. Some subtypes from the human cases could not be allocated to any of the sources from this study and were attributed to an unknown source. Our study emphasizes the importance of human-to-human transmission of ESBL-producing E. coli and the different role that pets, livestock and healthcare facilities may play in the transmission of these resistant bacteria. The developed source attribution model can be further used to monitor future trends. A One Health approach is necessary to develop source attribution models further to integrate also wildlife, environmental as well as food sources in addition to human and animal data.


Assuntos
Infecção Hospitalar , Infecções por Escherichia coli , Animais , Antibacterianos/farmacologia , Bovinos , Cães , Escherichia coli , Infecções por Escherichia coli/microbiologia , Alemanha/epidemiologia , Cavalos , Humanos , Filogenia , Suínos , beta-Lactamases/metabolismo
11.
Antimicrob Resist Infect Control ; 11(1): 81, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659363

RESUMO

BACKGROUND: One possible transmission route for nosocomial pathogens is contaminated medical devices. Formation of biofilms can exacerbate the problem. We report on a carbapenemase-producing Klebsiella pneumoniae that had caused an outbreak linked to contaminated duodenoscopes. To determine whether increased tolerance to disinfectants may have contributed to the outbreak, we investigated the susceptibility of the outbreak strain to disinfectants commonly used for duodenoscope reprocessing. Disinfection efficacy was tested on planktonic bacteria and on biofilm. METHODS: Disinfectant efficacy testing was performed for planktonic bacteria according to EN standards 13727 and 14561 and for biofilm using the Bead Assay for Biofilms. Disinfection was defined as ≥ 5log10 reduction in recoverable colony forming units (CFU). RESULTS: The outbreak strain was an OXA-48 carbapenemase-producing K. pneumoniae of sequence type 101. We found a slightly increased tolerance of the outbreak strain in planktonic form to peracetic acid (PAA), but not to other disinfectants tested. Since PAA was the disinfectant used for duodenoscope reprocessing, we investigated the effect of PAA on biofilm of the outbreak strain. Remarkably, disinfection of biofilm of the outbreak strain could not be achieved by the standard PAA concentration used for duodenoscope reprocessing at the time of outbreak. An increased tolerance to PAA was not observed in a K. pneumoniae type strain tested in parallel. CONCLUSIONS: Biofilm of the K. pneumoniae outbreak strain was tolerant to standard disinfection during duodenoscope reprocessing. This study establishes for the first time a direct link between biofilm formation, increased tolerance to disinfectants, reprocessing failure of duodenoscopes and nosocomial transmission of carbapenem-resistant K. pneumoniae.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecção Hospitalar , Desinfetantes , Bactérias , Biofilmes , Carbapenêmicos/farmacologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Surtos de Doenças , Desinfetantes/farmacologia , Duodenoscopia , Humanos , Klebsiella pneumoniae , Ácido Peracético/farmacologia
12.
Antibiotics (Basel) ; 11(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35740157

RESUMO

Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Escherichia coli is by far the leading cause of community-acquired UTIs. Pivmecillinam, the oral prodrug of the penicillin derivative mecillinam (amdinocillin), was re-introduced in Germany in March 2016 for first-line treatment of acute uncomplicated cystitis. This study aimed to evaluate the prevalence of resistance to mecillinam in comparison to nine other antibiotics used for oral treatment in E. coli urine isolates after the re-introduction of pivmecillinam. A total of 460 isolates were collected at 23 laboratories of clinical microbiology between October 2019 and March 2020. Forty-six isolates (10.0%) produced an extended-spectrum ß-lactamase (ESBL) of the CTX-M family. Resistance to amoxicillin (43.3%) was most widespread, followed by resistance to trimethoprim-sulfamethoxazole (27.0%), amoxicillin-clavulanic acid (18.0%), cefuroxime (11.3%), and ciprofloxacin (11.1%). Twenty-four E. coli isolates (5.2%) were resistant to mecillinam. The concentrations of mecillinam needed to inhibit 50/90% of the ESBL-producing isolates and the remaining isolates were 1/4 mg/L and 0.5/4 mg/L, respectively. The findings support the recommendation to regard pivmecillinam as a first-line option for the treatment of uncomplicated lower UTIs.

13.
Ann Clin Microbiol Antimicrob ; 21(1): 28, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751078

RESUMO

BACKGROUND: Escherichia coli (E. coli) is a common human pathogen, responsible for a broad spectrum of infections. Sites of infection can vary, but the hepato-biliary system is of particular concern due to the infection-associated formation of gallstones and the spread of pathogens from the bile ducts into the bloodstream. CASE PRESENTATION: The presented case is striking, as the detected isolate showed a positive string test. This hypermucoviscous phenotype is atypical for E. coli and a particular feature of hypervirulent Klebsiella pneumoniae (K. pneumoniae) variants. OBJECTIVES: To provide new insights into the genomic background of an E. coli strain with an unusual hypermucoviscous phenotype using hybrid short- and long-read sequencing approaches. RESULTS: Complete hybrid assemblies of the E. coli genome and plasmids were done and used for genome based typing. Isolate 537-20 was assigned to the multilocus sequence type ST88 and serotype O8:H4. The strain showed a close relationship to avian pathogenic strains. Analysis of the chromosome and plasmids revealed the presence of several virulence factors, such as the Conserved Virulence Plasmidic (CVP) region on plasmid 537-20_1, including several iron acquisition genes (sitABCD, iroABCDEN, iucABCD, hbd) and the iutA gene encoding the receptor of the siderophore aerobactin. The hypermucoviscous phenotype could be caused by encapsulation of putative K. pneumoniae origin. CONCLUSIONS: Hybrid sequencing enabled detailed genomic characterization of the hypermucoviscous E. coli strain, revealing virulence factors that have their putative origin in K. pneumoniae.


Assuntos
Bacteriemia , Neoplasias dos Ductos Biliares , Infecções por Escherichia coli , Tumor de Klatskin , Infecções por Klebsiella , Neoplasias dos Ductos Biliares/genética , Escherichia coli/genética , Humanos , Klebsiella pneumoniae , Plasmídeos , Fatores de Virulência/genética
14.
Open Forum Infect Dis ; 9(5): ofac114, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35434175

RESUMO

Background: In September 2018, Burkholderia cepacia complex (BCC) infections in 3 patients associated with exposure to a mouthwash solution (MWS) were reported to the Robert Koch Institute (RKI). As the product was still on the market and the scale of the outbreak was unclear, a nation-wide investigation was initiated. Methods: We aimed to investigate BCC infections/colonizations associated with MWS. Hospitals, laboratories, and public health services were informed that BCC isolates should be sent to the RKI. These isolates were typed by pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS) including development of an ad hoc core genome MLST (cgMLST) scheme. Results: In total, 36 patients from 6 hospitals met the case definition, the last patient in November 2018. Twenty-nine isolates from 26 of these patients were available for typing. WGS analysis revealed 2 distinct cgMLST clusters. Cluster 1 (Burkholderia arboris) contained isolates from patients and MWS obtained from 4 hospitals and isolates provided by the manufacturer. Patient and MWS isolates from another hospital were assigned to cluster 2 (B. cepacia). Conclusions: The combined clinical, epidemiological, and microbiological investigation, including whole-genome analysis, allowed for uncovering a supraregional BCC outbreak in health care settings. Strains of B. arboris and B. cepacia were identified as contaminating species of MWS bottles and subsequent colonization and putative infection of patients in several hospitals. Despite a recall of the product by the manufacturer in August 2018, the outbreak lasted until December 2018. Reporting of contaminated medical products and recalls should be optimized to protect patients.

15.
Zoonoses Public Health ; 69(4): 333-343, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35229466

RESUMO

Goats and other small ruminants are frequently used as contact animals in petting zoo settings of zoological gardens. However, they are capable to carry a broad spectrum of zoonotic pathogens without clinical signs. In this study, we analysed the presence of different zoonotic pathogens in 300 clinically healthy goats from 14 zoological gardens in Germany. Rectal and nasal swabs were investigated with a series of cultural and molecular techniques. In addition, vaginal swabs of the 230 female goats were investigated for the presence of Coxiella burnetii by real-time PCR. Antibodies against C. burnetii were tested in milk and serum by ELISA. Campylobacter spp. were found in 22.7%, Shiga-toxigenic Escherichia coli in 20.0% and Arcobacter spp. were found in 1.7% of the tested 300 goats after culture from rectal swabs and subsequent PCR. One sample contained an Escherichia fergusonii isolate with a blaCTX-M-1 -encoded extended-spectrum beta-lactamase phenotype. Neither Yersinia spp. nor Salmonella spp. were found. Nasal swabs of 20.7% of the goats yielded Staphylococcus aureus including one mecC-positive methicillin-resistant isolate. Neither Yersinia spp. nor Salmonella spp. were found, and none of the 230 vaginal swabs was positive for C. burnetii. Attempts to detect dermatophytes failed. In conclusion, a possible risk of transmission of zoonotic bacteria from goats in petting zoos to visitors should be considered. Appropriate information and facilities for hand washing and disinfection should be provided in all zoological gardens using goats as contact animals due to the regular presence of zoonotic bacteria in the collection.


Assuntos
Doenças das Cabras , Escherichia coli Shiga Toxigênica , Animais , Animais de Zoológico , Feminino , Cabras/microbiologia , Masculino , Salmonella , Escherichia coli Shiga Toxigênica/genética , Zoonoses
16.
Euro Surveill ; 27(50)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36695468

RESUMO

In 2022, German surveillance systems observed rapidly increasing numbers of NDM-1- and NDM-1/OXA-48-producing Klebsiella pneumoniae, which may in part reflect recurring pre-pandemic trends. Among these cases, however, a presence in Ukraine before diagnosis was frequently reported. Whole genome sequencing of 200 isolates showed a high prevalence of sequence types ST147, ST307, ST395 and ST23, including clusters corresponding to clonal dissemination and suggesting onward transmission in Germany. Screening and isolation of patients from Ukraine may help avoid onward transmission.


Assuntos
Proteínas de Bactérias , Infecções por Klebsiella , Humanos , Proteínas de Bactérias/genética , Klebsiella pneumoniae/genética , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Ucrânia/epidemiologia , beta-Lactamases/genética , Alemanha/epidemiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
17.
J Antimicrob Chemother ; 77(2): 381-390, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34865035

RESUMO

BACKGROUND: Extended-spectrum ß-lactamases (ESBLs) are enzymes that can render their hosts resistant to various ß-lactam antibiotics. CTX-M-type enzymes are the most prevalent ESBLs and the main cause of resistance to third-generation cephalosporins in Enterobacteriaceae. The number of described CTX-M types is continuously rising, currently comprising over 240 variants. During routine screening we identified a novel blaCTX-M gene. OBJECTIVES: To characterize a novel blaCTX-M variant harboured by a multidrug-resistant Escherichia coli isolate of sequence type ST354. METHODS: Antibiotic susceptibilities were determined using broth microdilution. Genome and plasmid sequences were reconstructed using short- and long-read sequencing. The novel blaCTX-M locus was analysed using long-read and Sanger sequencing. Plasmid polymorphisms were determined in silico on a single plasmid molecule level. RESULTS: The novel blaCTX-M-243 allele was discovered alongside a nearly identical blaCTX-M-104-containing gene array on a 219 kbp IncHI2A plasmid. CTX-M-243 differed from CTX-M-104 by only one amino acid substitution (N109S). Ultra-deep (2300-fold coverage) long-read sequencing revealed dynamic scaling of the blaCTX-M genetic contexts from one to five copies. Further antibiotic resistance genes such as blaTEM-1 also exhibited sequence heterogeneity but were stable in copy number. CONCLUSIONS: We identified the novel ESBL gene blaCTX-M-243 and illustrate a dynamic system of varying blaCTX-M copy numbers. Our results highlight the constant emergence of new CTX-M family enzymes and demonstrate a potential evolutionary platform to generate novel ESBL variants and possibly other antibiotic resistance genes.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Duplicação Gênica , beta-Lactamases , Antibacterianos/farmacologia , Enterobacteriaceae/genética , Plasmídeos/genética , beta-Lactamases/genética
18.
Anal Chem ; 93(44): 14599-14608, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34697938

RESUMO

Antimicrobial resistance (AMR) poses an increasing challenge for therapy and clinical management of bacterial infections. Currently, antimicrobial resistance detection relies on phenotypic assays, which are performed independently from species identification. Sequencing-based approaches are possible alternatives for AMR detection, although the analysis of proteins should be superior to gene or transcript sequencing for phenotype prediction as the actual resistance to antibiotics is almost exclusively mediated by proteins. In this proof-of-concept study, we present an unbiased proteomics workflow for detecting both bacterial species and AMR-related proteins in the absence of secondary antibiotic cultivation within <4 h from a primary culture. The workflow was designed to meet the needs in clinical microbiology. It introduces a new data analysis concept for bacterial proteomics, and a software (rawDIAtect) for the prediction and reporting of AMR from peptide identifications. The method was validated using a sample cohort of 7 bacterial species and 11 AMR determinants represented by 13 protein isoforms, which resulted in a sensitivity of 98% and a specificity of 100%.


Assuntos
Antibacterianos , Proteômica , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana
19.
Microb Genom ; 7(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34693903

RESUMO

Non-typhoidal Salmonella enterica is an important gastrointestinal pathogen causing a considerable burden of disease. Resistance to third generation cephalosporins poses a serious threat for treatment of severe infections. In this study occurrence, phylogenetic relationship, and mechanisms of third generation cephalosporin resistance were investigated for clinical non-typhoidal S. enterica isolates in Germany. From 2017 to 2019, we detected 168 unique clinical S. enterica isolates with phenotypic resistance to third generation cephalosporins in a nation-wide surveillance. Compared to previous years, we observed a significant (P=0.0002) and consistent increase in resistant isolates from 0.41 % in 2005 to 1.71 % in 2019. In total, 34 different serovars were identified, most often S. Infantis (n=41; 24.4 %), S. Typhimurium (n=27; 16.1 %), S. Kentucky (n=21; 12.5 %), and S. Derby (n=17; 10.1 %). Whole genome analyses revealed extended-spectrum ß-lactamase (ESBL) genes as main cause for third generation cephalosporin resistance, and most prevalent were blaCTX-M-1 (n=55), blaCTX-M-14 (n=25), and blaCTX-M-65 (n=23). There was no strict correlation between serovar, phylogenetic lineage, and ESBL type but some serovar/ESBL gene combinations were detected frequently, such as blaCTX-M-1 and blaCTX-M-65 in S. Infantis or blaCTX-M-14b in S. Kentucky. The ESBL genes were mainly located on plasmids, including IncI, IncA/C variants, emerging pESI variants, and a novel blaCTX-M-1harbouring plasmid. We conclude that third generation cephalosporin resistance is on the rise among clinical S. enterica isolates in Germany, and occurrence in various S. enterica serovars is most probably due to multiple acquisition events of plasmids.


Assuntos
Resistência às Cefalosporinas/genética , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Salmonella enterica/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Cefalosporinas , Alemanha , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/isolamento & purificação , Sorogrupo
20.
Pathogens ; 10(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066734

RESUMO

The increase in infections with multidrug-resistant and virulent Klebsiella pneumoniae (K. pneumoniae) strains poses a serious threat to public health. However, environmental reservoirs and routes of transmission for Klebsiella spp. that cause infections in humans and in livestock animals are not well understood. In this study, we aimed to analyze the distribution of antibiotic resistance genes and important virulence determinants (ybt, clb, iro, iuc, rmpA/A2) among 94 Klebsiella spp. isolates from different animal and food sources isolated between 2013 and 2017 in Germany. Antibiotic susceptibility testing was performed, and the genomes were sequenced by Illumina and Nanopore technology. Genetic relationships were assessed by conducting core genome multilocus sequence typing (cgMLST). Kleborate was used to predict resistance and virulence genes; Kaptive was used to derive the capsule types. The results revealed that 72 isolates (76.6%) belonged to the K. pneumoniae sensu lato complex. Within this complex, 44 known sequence types (STs), 18 new STs, and 38 capsule types were identified. Extended-spectrum beta-lactamase (ESBL) genes were detected in 16 isolates (17.0%) and colistin resistance in one (1.1%) K. pneumoniae isolate. Virulence genes were found in 22 K. pneumoniae isolates. Overall, nine (9.6%) and 18 (19.1%) isolates possessed the genes ybt and iuc, respectively. Notably, aerobactin (iuc lineage 3) was only detected in K. pneumoniae isolates from domestic pigs and wild boars. This study provides a snapshot of the genetic diversity of Klebsiella spp. in animals and food products in Germany. The siderophore aerobactin was found to be more prevalent in K. pneumoniae strains isolated from pigs than other sources. Further investigations are needed to evaluate if pigs constitute a reservoir for iuc lineage 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...